

Q Value .. Aspheric Ablation

Mahmoud M. Ismail, M.D, Ph.D.
Professor Of Ophthalmology
University of Al-Azhar
Cairo-Egypt

The mistery Aspheric Cornea

- Steep center and flattens toward the periphery = "Prolate"
- Prolate cornea, central light rays focus anterior to the peripheral rays =
"-ve spherical aberration."
- Oblate cornea, central light rays are focused behind the peripheral rays =
"+ve spherical aberration"

Prolate ... To focus each light ray

Q Value : Asphericity ratio

- Amount cornea peripherally flattened from apex
- Normal aspheric cornea has a Q factor between $-0.20 \&-0.45$
- Q of zero $=$ a completely spherical cornea
- $\mathrm{Q}>$ zero corresponds to an oblate cornea $=$ induces positive spherical aberration.
- The more Prolate = more negative spherical aberration.

Wavefront Distortion

- irregular surface
- wide angle Kappa
- Inadequate Pupil size

Shack-Hartmann ..

Post. Corneal mapping ... !!!!

Capture
Charge-Coupled
Device Camera
(CCD)

> Ocular distortion of wavefront

In spite of all the technology
 Disastrous

Are we "correctly centring"

Corneal Apex (Vertex)

- Visual axis
- Pupil centration

Angle Kappa

Consider Pupil size

$-6.5-1.75 \times 10^{0}$ Age 21 ys

$-6.25-2.25 \times 170^{\circ}$ A.C depth: 2.6
пипй

ш

Because she has ... !!!

Influence of Pupil Size

Big difference

OD: $-5.25-1.25 \times 15$
 OS: $-5.50-1.50 \times 165$

OD Pro-Scan
 OS Q Value Orientation

Postop. PSF Standard

Postop. PSF Q Value adj

Q Value

- The cornea has positive SA, approx $+0.27 \mu \mathrm{~m}$ for a 6 mm diameter

