El Cairo, 25-26 January 2018

The Future and New Concepts in Intraocular Lenses for Presbyopia

Prof. Rafael I. Barraquer Barraquer Institute Barcelona, SPAIN

Options for Presbyopia Correction

- Spectacles (bi-, prog-)
- Contact lenses (pr.)
- Scleral surgery
- Corneal surgery
- Phakic IOLs
- Lens surgery
 - IOLs (MuF, Accom.)
 - Lentotomy (Lfs)
- Drugs
- Exercise/Stimulation

Multifocal IOL: Cons

(Franssen y Coppens, 2007)

- Quality Loss (MTF, CSF slightly noticeable but measurable)
- Light intens. loss (diffractive 14% 22%, little noticeable exc. in low light)
- Increased Straylight
- Pupil-dependant (+ refractive, apodized)
- Dysphotopsia (halos, glare, etc.)
- Damanding calculations → enhancements for RRE
- Do not provide continuous focus at all distances
- More sensitive to additional causes of visual quality loss (alt. Tear F., PCO, mácula)
- Require learning / neuroadaptation
- Dependes on personality, expectations...

"Extended Range"

- Symfony (Tecnis)
 - "Echelette"
 - Incorporates correction of spherical aberration
- Mini Well (SIFI)
 - "Progressive"
 - "Continuous focus" in place of multiple focus points
- IC-8 (Acufocus)
 - Increases Depth of Focus by 1,5 D
 - Dominant eye: Monofocal IOL
 - Nondominant eye: IC-8 (-0,75D target refraction)

"Extended Range" IOLs

PROS

- Avoid some problems of multifocal IOL
- No loss of distance visual quality
- Cromatic aberration correction (Sy)
- Progresive focus (MW)
- Less / No halos
- CONS
 - Insufficient UC Near Vision
 - Monovision scheme (IC-8)
 - How to select "Premium IOL" patients which will require glasses for near vision?

"Accommodative" IOL

 Those that experience active changes in their power or effective focus (by position, moving parts, flexion or other deformation, etc.), NOT EXCLUDING additional pseudoaccommodative phenomena.

TYPES:

- ► Flexible (by ciliary action vs. "vitreous pressure" ?)
 - Axial movement (1 or 2 optics: Hara 1990, Crystalens, CU-1, Synchrony, etc.)
 - Elastic deformation by direct ciliary compression (NuLens)
 - A Hydraulic deformation by idem (Sergienko 1993, FluidVision)
 - Capsular bag refilling with elastic gel by ciliary decompression (Phaco-Ersatz)

Lateral movement (by ciliary action)

- Alvarez 2-optics (Akkolens Lumina)
- A Gaussian 6-optics (Shen & O'Day ARVO 2002)
- Electro-óptic
 - MSAA: Mechanotronic System of Artificial Accommodación (KIT-Rostock)

Lateral Movement IOL

Akkolens Lumina

- 2 parallel optics with "S" faces "S"
- Luis W.Álvarez principle (US Patent 3305294, 1967) Physics Nobel Prize 1968
- Power changes with relative position of the optics
- Current design: M. Rombach
- Sulcus implantation, foldable 2.8mm.
- Move because of ciliary contraction

<section-header><section-header><text><text>

FsL-Lentotomy for Presbyopia 1st trials in humans (Mexico & Philippines, LenSAR 2010)

S. Shah AAO 2017

Summary

■ → We still need to improve the basic knowledge on accommodation mechanism and its loss with age.

Currently preferable options (efficacy & safety):

- ► > 53-55 y. or high ametropia: Multifocal IOL (bi- tri-)
- < 53-55 a. and low ametropia: Advanced Monovision (hyperprolate LASIK)

Extended range IOLs: some obbjective advantages, niche?

Future:

- New accommodative IOLs: + effective (clinical studies)
- ► Femtolaser Lentotomy → some promising results
- Many ideas (including non-surgical) but...

