

Faria-Correia

cuf

MD, PhD

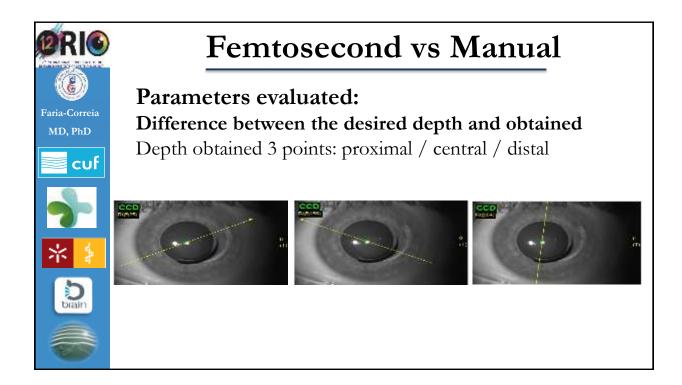
 *

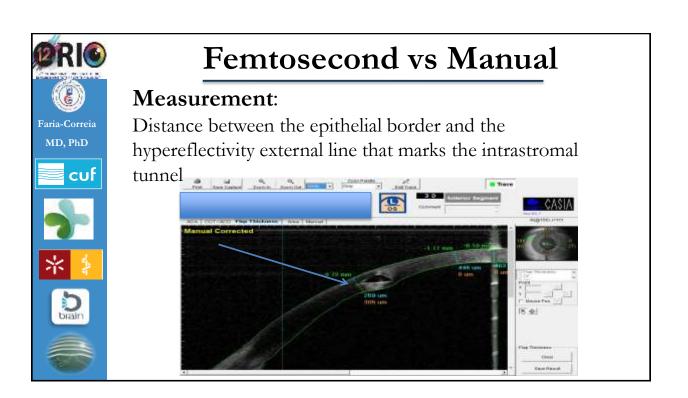
Compared to Mechanical method:

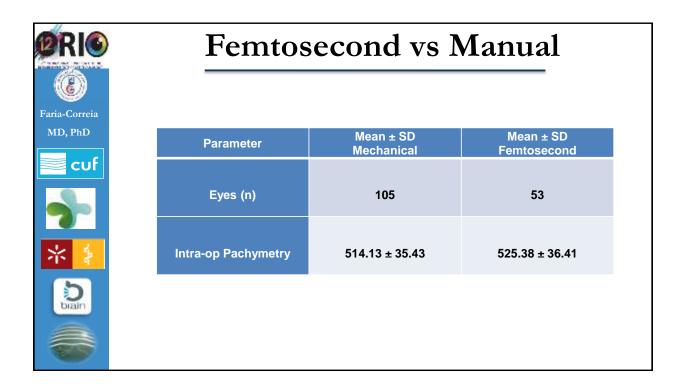
- Easier and faster surgery
- Centration
- Create a more uniform and accurate stromal dissection plane
- Less complications rate

BUT...

• Not resulted in superior visual/refractive outcomes compared with the manual technique.


Femtosecond-assisted ICRS


Monteiro T. et al - accepted in Journal of Refractive Surgery


OBJECTIVE:

To compare the **accuracy** and the **predictability** of Ferrara-type ICRS between the mechanical manual technique and the femtosecond laser assisted technique using a swept source OCT (Casia SS-1000 (Tomey®, Nagoya, Japan).

Study Groups Manual Group: Hospital de Braga, Portugal Femto Group: Instituto Oftalmologico Fernandez-Veja, Oviedo, Spain

ØRIO		Manual									
		-					Surgical Techn	ique		-	
Faria-Correia		Manual				Friedman test					
MD, PhD	Relative Delta	N	Mean (µm)	SD (µm)	Min (μm)	Max (μm)	Variables	Central Delta	Distal Delta	Proximal Delta	Mean Rank
cuf	Central Delta	105	-25.54	71.01	- 218	136	Central Delta		-	P< 0.05	2.1524
	Distal Delta	105	-26.52	73.21	- 211	136	Distal Delta	-		P< 0.05	2.1381
	Proximal Delta	105	-40.87	69.03	- 263	74	Proximal Delta	P<0.05	P<0.05		1.7095
* 🕴	The dif	feren	ce bet	ween	intrast	romal d	epth intende	ed versus a	achieved	was <mark>sign</mark>	ificantly
	sh	allow	ver in t	he ma	inual g	roup, fo	r all three lo	ocations (p	o<0.05)		
brain	57.14% of eyes had a superficial implantation shallower than 10 µm from the intended										
-	27.61% of eyes had a deeper implantation above 10 µm from the intended										

15.24% of eyes reached an achieved depth within \pm 10 μ m from the intended

Femtosecond

	Surgical Technique										
	Femtosecond Laser					Friedman test					
Relative Delta	N	Mean (µm)	SD (µm)	Min (µm)	Max (µm)	Variables	Central Delta	Distal Delta	Proximal Delta	Mean Rank	
Central Delta	53	-3.26	10.58	- 26	22	Central Delta		P<0.05	-	2.2453	
Distal Delta	53	-8.09	11.91	- 56	20	Distal Delta	P<0.05	-	P< 0.05	1.6509	
Proximal Delta	53	-4.24	11.89	- 27	25	Proximal Delta	-	P<0.05	-	2.1038	

The difference between intrastromal depth intended versus achieved was not

significantly different for all three locations (p>0.05)

22.64% of eyes had a superficial implantation shallower than 10 μ m from the intended 9.44% of eyes had a deeper implantation above 10 μ m from the intended 67.92% of eyes reached an achieved depth within ± 10 μ m from the intended

Femtosecond vs Manual

The implantation of ICRS for the treatment of Keratoconus assisted by Femtosecond laser is a more precise and reproducible technique, compared to the manual technique;

The femtosecond technique is a safer technique: associated with a lower incidence of mechanical complications (late extrusions of the implant), it allows obtaining a more precise implant in the corneal stroma.

Different Phenotypes of Keratoconus

PHENOTYPE	ANTERIOR CURVATURE	ANTERIOR	FINDINGS
CROISSANT		0	Inverted Astigmatism Topo/Coma axis coincident K1 axis > 45 ^p
DUCK			Direct/Oblique Astigmatism Topo/Coma axis non- coincident (difference 30% – 75%)
SNOWMAN			K1 axis horizontal Topo/Coma axis perpendicular (difference >75 ^e)
BOWTIE			High astigmatism Similar ant-post elevation
NIPPLE			Less astigmatism Central hiperprolate

Adjustment of ICRS to the phenotype

Correa, 2018 Feb;37(2) 182-188. doi: 10.1097/ICO.00000000001449.

Adjustment of Intrastromal Corneal Ring Segments After Unsuccessful Implantation in Keratoconic Eyes.

Monteiro T^{1,2}, Mendes JF^{1,2}, Farla-Correia F^{1,2}, Franqueira N^{1,2}, Madrid-Costa D³, Alfonso JF⁴.

Author information

Abstract

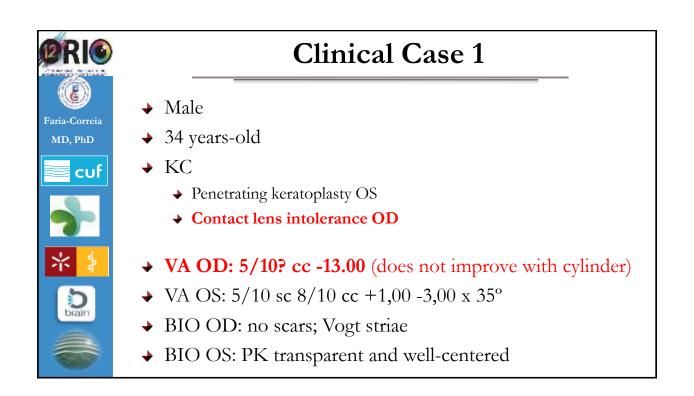
PURPOSE: To evaluate visual, refractive, and comeal topography outcomes in eyes with keratoconus that have undergone exchange/adjustment surgery with a new intrastromal corneal ring segment (ICRS) combination after unsuccessful visual and/or refractive outcomes after primary ICRS surgery.

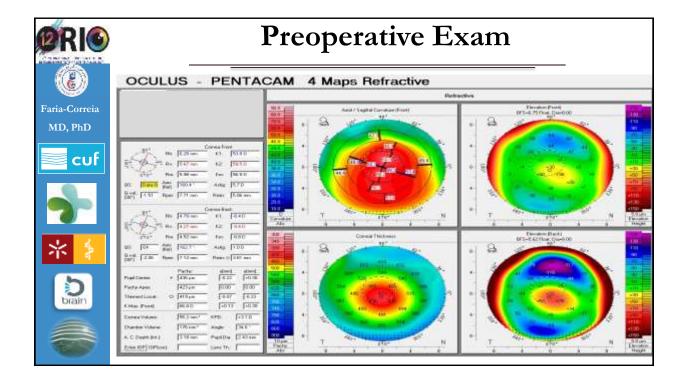
METHODS: A retrospective nonrandomized case series was conducted including consecutive eyes of patients with keratoconus that underwent ICRS adjustment after an unsuccessful visual outcome. Patients were divided into 2 groups: group 1 was made up of patients with Intacs ICRSs that were exchanged for the Ferrara ICRS type, and group 2 consisted of patients who maintained the same ICRS type after undergoing ICRS adjustment surgery (change of the arc length or thickness). Uncorrected distance visual acuity, bestcorrected distance visual acuity (CDVA), keratometry, asphericity, higher-order aberrations, and comeal regularity indexes (ISV and IHD) (Pentacam HR; OCULUS) were assessed preoperatively and 12 months after each procedure.

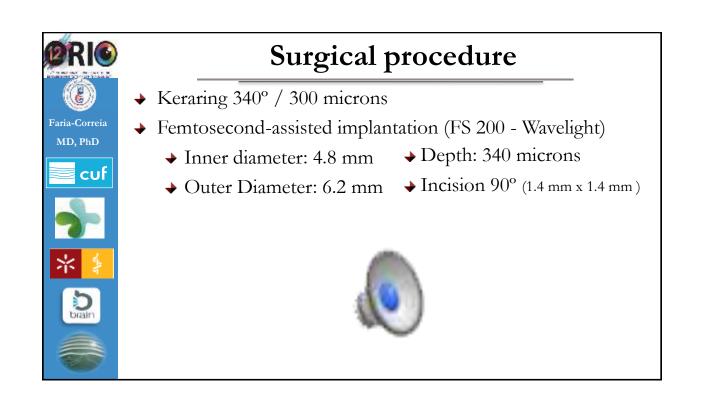
RESULTS: Twenty-six eyes from 26 patients were included, 8 eyes in group 1 and 18 eyes in group 2. The eyes in both groups improved their CDVA values after ICRS exchange, in group 1 from 0.27 ± 0.11 preoperatively to 0.54 ± 0.17 postoperatively (P = 0.001), and in group 2 from 0.34 ± 0.22 to 0.61 ± 0.15 (P < 0.0001). In both groups, there was also a significant improvement in the refractive cylinder, topographic cylinder, and come after ICRS adjustment (P < 0.05).

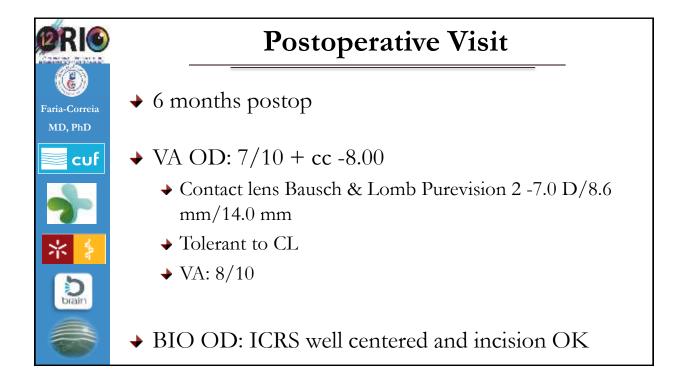
CONCLUSIONS: ICRS implantation has been shown to be a reversible and adjustable surgical procedure for keratoconus treatment. Good outcomes can be obtained after ICRSs are exchanged.

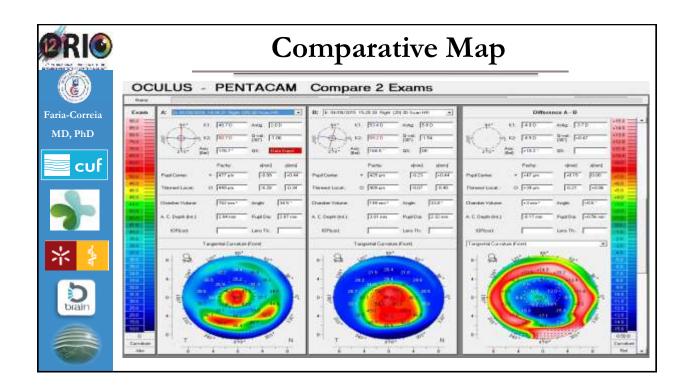
"The Big" ICRS

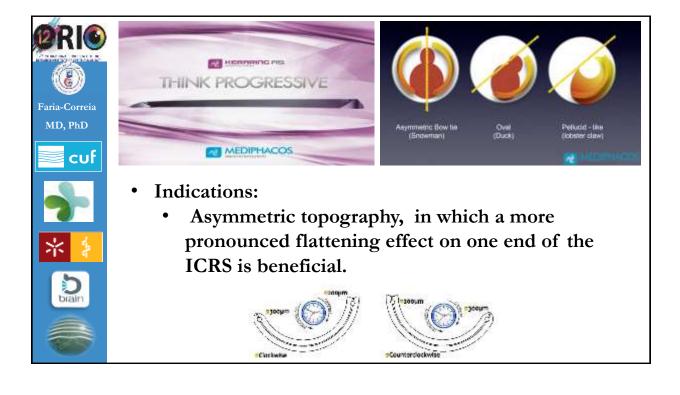

- Indications:
 - Nipple Cone
 - Low astigmatism
- K Max > 60 D
- CCT at least 400 microns at center

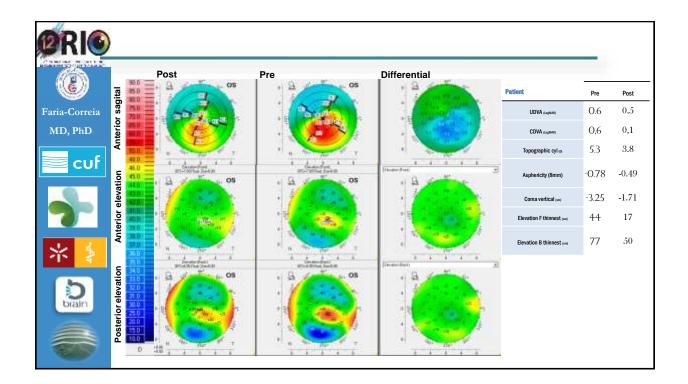

Femtosecond laser required

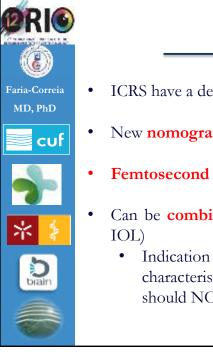

- Tunnel
- Pocket
- Nomogram
 - 200 microns if SE < 6.0 D
 - 300 microns if SE > 6.0 D




340°/320°







Take-home Messages

- ICRS have a definitive role in the treatment of Ectatic Corneal Diseases
- New nomograms and ICRS design allow customization
- Femtosecond laser offers more safety and efficiency to the procedure
- Can be **combined** with other treatment modalities (CXL, PRK, phakic IOL)
 - Indication should be considered based on individual patient characteristics, including UDVA, DCVA, ectasia progression and should NOT be generalized.

